Photon-Jet studies at RHIC Recent jet-like correlation measurements and a way towards photon-triggered jets at RHIC Nihar Ranjan Sahoo Texas A&M University RHIC/AGS Annual Users' Meeting, 2016 # Why we should study y-jet in heavy ion collisions? Direct photon+jet coincidence is a good tomographic probe to study the QGP in HIC - Doesn't interact with QCD medium - Transverse energy approximates that of initial parton pT in γ-jet events - volume emission dominates for γ-trigger events #### Compelling measurements: - γ-hadron correlations (advantage in AuAu due to bg.) - y-tagged jet reconstruction # What physics we are looking for? - Parton energy loss in QCD medium depends on - Initial energy of parton, color factor, path length, gluon density, transport coefficient, etc. #### An interesting comparison with π^0 -jet - Recoil parton from direct photon predominantly quarks, whereas that of π⁰ are gluons (D. de Florian et al., PRD 91, 014035 (2015), T. Kaufmann et al., PRD 92, 054015 (2015)) - γ -triggered parton (jet) loses less energy than that of π^0 -trigger - due to color factor ($C_A/C_F = 9/4$) - γ -triggers are mainly volume emission, whereas π^0 -triggers are surfaced biased - on ave. γ -triggered parton (jet) loses less energy than that of π^0 -trigger - due to path length - Energy loss as a function of - Trigger p_T of direct photon - Associated hadron p_T # **Experimental techniques and challenges** - Direct photon discrimination from neutral hadrons (like π^0 , η) - STAR experiment: Transverse shower profile method - PHENIX experiment: Statistical subtraction method (from meson decays) - Isolation cuts - Background subtraction - Underlying event bg., flow component in azimuthal correlations, etc... both in γ-hadron correlation and in γ-tagged jet reconstruction - Different systematic effects from unknown sources - Finally, we need large statistics #### Observables at RHIC $$\begin{split} I_{AA}(x) &= \frac{Y^{Au+Au}(x)}{Y^{p+p}(x)} & \text{Ratio of Au+Au to p+p per trigger yields} \\ \text{Where} \quad x &= \quad p_T^{\gamma} & \text{Trigger p}_T \\ &= \quad p_T^{assoc} & \text{Associated hadron p}_T \\ &= \quad z_T \ (= \frac{p_T^{assoc}}{p_T^{\gamma}}) & \text{Fraction of momentum carried by the away-side hadron} \end{split}$$ # Jet-like azimuthal correlation functions ### STAR experiment - In γ_{rich} small peak due to some contamination of π^0 - Background subtracted from flow modulated background level determined using ZYA1 method - Near-side yield is by definition zero for direct-photon trigger #### PHENIX experiment - γ_{dir}-hadron correlations in p+p and Au+Au - At low z_T , sys. uncertainty due to higher flow (n>2) components seems noticeable in Au+Au # Associated yields of π⁰-hadron correlations #### From STAR experiment Some discussion of π^0 –hadron correlations - Near-side and away-side yields are extracted within $|\Delta \mathbf{\phi}| \le 1.4$ and $|\Delta \mathbf{\phi} \pi| \le 1.4$ - Away-side yields show suppression - Near-side shows no suppression - ■By integrating z_T times near-side yields, STAR exp. estimated 85(±3)% fraction of energy carried by $π^0$ over "jet energy" ($π^0$ + charged hadrons) in pp 200 GeV - In PYTHIA, it is found to be 80(±5)% which is consistent with data ### Yields associated with Y_{dir} – trigger: Fragmentation function PRL 111, 032301 (2013) - Fragmentation function is modified - Not const. at all z_T/ξ #### PHENIX experiment Using statistical subtraction method: $$Y_{\rm dir} = \frac{R_{\gamma} Y_{\rm inc} - Y_{\rm dec}}{R_{\gamma} - 1}$$ Where, $$Y_{inc} = \frac{1}{N_{inc}} \frac{dN^{h-\gamma_{inc}}}{d\Delta\phi}$$ $$R_{\gamma} = rac{N_{inc}}{N_{dec}}$$ ~1.4 to ~2.3 vs. p_T PRL 109, 152302 (2012). ### Yields associated with Y_{dir} – trigger: Fragmentation function #### STAR experiment $$Y_{\gamma_{dir}+h} = \frac{Y_{\gamma_{rich}+h}^a - RY_{\pi^0+h}^a}{1 - R}$$ $Y_{\gamma_{rich+h}}^{a(n)}$ and $Y_{\pi^0+h}^{a(n)}$: away-side (near-side) yields of associated particles per $Y_{\rm rich}$ and π^0 trigger, respectively. Purity of γ^{rich} sample $$1 - R = \frac{N_{\gamma^{dir}}}{N_{\gamma^{rich}}}$$ (1-R) are ~40% and ~70% for p+p and Au+Au central (0-12%) collisions, respectively - Fragmentation function is modified - Away-side yields show suppression in Au+Au collisions as compared with p+p # Nuclear modification factor: I_{AA} of Y_{dir} and π^0 STAR experiment - Within large uncertainties, $I_{AA}^{z_T}$ and I_{AA}^{Ydir-h} show - similar suppression: No clear path length and color factor effect observed - strong suppression: particularly for $z_T > 0.2$ - Indication of less suppression at low zT, but not significant - More significant effect in I_{AA} (p_Tassoc) - Models are consistent with data ### Nuclear modification factor: I_{AA} of Y_{dir} - At low z_T, I_{AA} is less suppressed at high p_T^{trig} than at low p_T^{trig} - At high z_T, similar level suppression in both p_T^{trig} regions - Redistribution of energy in YaJEM model to differentiate between PHENIX and STAR I_{AA} - Qin, ZOWW models don't show enhancement at low z_T (for 12-20 GeV/c) #### Comparison with other theoretical model Only considering trend of I_{AA} as a function of z_T Unlike Qin, ZOWW models, YaJEM model includes energy loss by gluon radiation that redistributed to soft particles Hence, large enhancement at low z_T compared with high z_T #### **Energy loss in azimuthal windows** - High trigger p_T, no recovery of energy loss even at wider azimuthal angle [12 < p_Ttrig < 20 GeV/c → 0.1 < z_T < 0.4 → 1.2 < p_Tasso < 8 GeV/c] - Low trigger p_T, recovery at smaller z_T [5< p_T^{trig} < 9 GeV/c → 0.1< z_T < 0.4 → 0.5 < p_T^{asso} < 3.6 GeV/c] soft particles coming out at wider azimuthal window !!!! # Energy Loss as a function of associated hadron p_T arXiv:1604.01117 - Soft associated particles are less suppressed compared with high p_T - Energy loss as a function of z_T and associated hadron p_T respond similarly # Energy Loss as a function of triggered direct photon p_T Energy loss is insensitive to the energy of triggered direct photon at high p_T (8-20 GeV/c) arXiv:1604.01117 #### What we have observed so far? #### From RHIC measurements - Within uncertainties, no clear path length and color factor effect observed in π^0 vs. γ triggers !!!! - May be these effects are very sensitive!!!! - Precision measurement may be required - "Modified" FF not independent of p_T^{trig} - Less suppression or even enhancement at low p_T assoc - Soft particles (p_Tassoc < 2 GeV/c) coming out at wider azimuthal angles - Energy loss is insensitive to the energy of triggered γ at high p_T (8-20 GeV/c) at RHIC #### What next? γ tagged Jet reconstruction- Full jet reconstruction can give us full energy of away-side recoil parton (But there are many experimental challenges) # Direct photon tagged jet reconstruction at RHIC - Including π^0 suppression in HIC, γ/π^0 ratio exceeds unity above $p_T > 15$ GeV - In pp, we need to do proper isolation cut - It is possible to have γ-jet measurement at top RHIC - Along with that comparison with π⁰-jet measurement could also be interesting too Better to have simulation study before data analysis..... # Pythia simulation study of γ-Jet measurement - HT trigger can provide neutral triggers (π^0, γ) in STAR experiment - Preliminary simulation studies using Pyhthia8 have been done # γ-tagged recoil jet in Pythia8 Uncorrelated jet are used to subtract background # Comparison charged vs full jet reconstruction For full Jet reconstruction, nice peak at 15 < p_T^{trig} < 20 GeV/c Work is ongoing using STAR data for Au+Au and p+p collisions..... ### **Summary and Outlook** - I_{AA} measurement for γ -trigger hadron correlations is discussed from low to high p_T range (5-9 and 12-20 GeV/c) at RHIC - Within uncertainties, no clear path length and color factor effect observed in π^0 vs. γ triggers !!!! - May be these effects are very sensitive!!!! - Precision measurement may be required - "Modified" FF not independent of p_T^{trig} - Less suppression or even enhancement at low p_T assoc - Soft particles (p_T^{assoc} < 2 GeV/c) coming out at wider azimuthal angles - Energy loss is insensitive to the energy of triggered γ at high p_T (8-20 GeV/c) at RHIC Work is ongoing in STAR experiment to measure both γ - and π^0 -tagged charged/Full jet reconstruction to have good understanding on parton energy loss at RHIC energy.... In the Future - sPHENIX ... Interesting Direct photon-Jet physics is ongoing at RHIC Stay tuned..... Thank you! Back Up # Transverse shower profile method E_{cluster}: Cluster energy, e_i: BSMD strip energy, r_i: distance of the strip from the center of the cluster - Wider shower represents small TSP and vise versa - TSP cuts tuned to get - a nearly pure sample of π^0 (called " π^0_{rich} ") - a sample of enhanced fraction of γ_{dir} (γ_{rich})